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ABSTRACT

Parameterizations of turbulence often predict several lower-order moments and make closure assump-
tions for higher-order moments. In principle, the low- and high-order moments share the same probability
density function (PDF). One closure assumption, then, is the shape of this family of PDFs. When the
higher-order moments involve both velocity and thermodynamic scalars, often the PDF shape has been
assumed to be a double or triple delta function. This is equivalent to assuming a mass-flux model with no
subplume variability. However, PDF families other than delta functions can be assumed. This is because the
assumed PDF methodology is fairly general.

This paper proposes closures for several third- and fourth-order moments. To derive the closures, the
moments are assumed to be consistent with a particular PDF family, namely, a mixture of two trivariate
Gaussians. (This PDF is also called a double Gaussian or binormal PDF by some authors.) Separately from
the PDF assumption, the paper also proposes a simplified relationship between scalar and velocity skew-
nesses. This PDF family and skewness relationship are simple enough to yield simple, analytic closure
formulas relating the moments. If certain conditions hold, this set of moments is specifically realizable. By
this it is meant that the set of moments corresponds to a real Gaussian-mixture PDF, one that is normalized
and nonnegative everywhere.

This paper compares the new closure formulas with both large eddy simulations (LESs) and closures
based on double and triple delta PDFs. This paper does not implement the closures in a single-column
model and test them interactively. Rather, the comparisons are diagnostic; that is, low-order moments are
extracted from the LES and treated as givens that are input into the closures. This isolates errors in the
closures from errors in a single-column model. The test cases are three atmospheric boundary layers: a trade
wind cumulus layer, a stratocumulus layer, and a clear convective case. The new closures have shortcomings,

but nevertheless are superior to the double or triple delta closures in most of the cases tested.

1. Introduction

There has long been interest in higher-order turbu-
lence closure models of the clear and cloudy boundary
layer in the earth’s atmosphere. Such models often pre-
dict central moments of vertical velocity w and thermo-
dynamic scalars such as total specific water content ¢, (a
conserved variable, namely, the sum of vapor and liquid
water) and liquid water potential temperature 6, (a con-
served variable that reduces to potential temperature in
the absence of liquid).

Higher-order turbulence models are subject to the
so-called closure problem. For instance, a prognostic
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moment equation of given order inevitably contains a
higher-order moment that represents the turbulent flux
of that quantity. To cite a specific example, the prog-
nostic equation for the grid-box-averaged variance of
g, )%, contains the vertical turbulent flux of g%, w'q,>.
The closure problem, then, is to solve for unclosed mo-
ments, such as w'g.?, in terms of prognosed moments,
such as g,°. Sometimes closure is complicated by the
fact that the prognosed and unclosed moments are nu-
merous. Once the unclosed moments have been diag-
nosed, however, the lower-order moments can be prog-
nosed for the next time step, and the whole process
repeats, advancing the solution in time.

The present paper discusses a methodology to derive
approximate, analytic closure formulas, namely, the as-
sumed probability density function (PDF) method
(Sommeria and Deardorff 1977; Mellor 1977; Smith
1990; Bony and Emanuel 2001; Larson et al. 2001;
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Tompkins 2002). The methodology is as follows. We
assume a family of PDFs that is specified by a number
of parameters. The family is chosen based on simplicity
and agreement with data. This paper assumes that the
family is the sum of two Gaussians. For each grid box
and time step, the higher-order model prognoses a set
of moments. From the point of view of the closure
problem, these are taken as known quantities or givens.
Then from the assumed family of PDFs, we select a
particular member for each grid box and time step by
requiring it to be consistent with the prognosed mo-
ments. Once the PDF is specified, we can calculate
from it whatever unclosed higher-order moments are
needed. Then the closure is complete. For higher mo-
ments involving both w and g, or 6,, a simple PDF fam-
ily, namely, a sum of two Dirac delta functions, has
been used by meteorologists (Randall et al. 1992; Ab-
della and McFarlane 1997; Zilitinkevich et al. 1999;
Lappen and Randall 2001) and engineers (e.g., Chung
2002, 775-778). Meteorologists have also used a sum of
three Dirac delta functions (Mironov et al. 1999; Ab-
della and Petersen 2000; Gryanik and Hartmann 2002).
This paper explores a new PDF family designed to bet-
ter represent the atmospheric boundary layer.

The assumed PDF method has several advantages.
First, it allows one to derive a large number of moments
in an internally consistent manner (e.g., Lappen and
Randall 2001). In other words, if a valid joint PDF can
be specified from the lower-order moments, then all
higher-order moments derived from it are consistent
with the same joint PDF. This is more attractive than
using separate closure assumptions for all the many mo-
ments that typically must be closed. Second, the
method offers physical insight into the closure rela-
tions: namely, because a PDF is used to derive the mo-
ment closure formulas, those formulas can be inter-
preted in terms of the shape of the PDF. Third, the
method has some generality: if the closure formulas
turn out not to be suitable for a particular physical
problem, one can seek an alternative PDF family,
which will lead to alternative moment closures. A key
point of this paper is that the assumed PDF methodol-
ogy is not restricted to delta function PDFs, even when
we need a joint PDF of w, 6,, and g,

We desire closure formulas for the higher-order mo-
ments than can be written simply and analytically in
terms of the lower-order moments. Analytical formulas
are useful in part because they alert us to values of
moments that give undefined results, for example, val-
ues that lead to division by zero. Furthermore, analyti-
cal formulas ease numerical implementation. In par-
ticular, they facilitate the implicit discretization of the
higher-order turbulent advection terms in the model’s
prognostic equations. The implicit discretization, in
turn, allows the use of a longer time step, thereby re-
ducing computational cost. To obtain analytic closure
formulas, we must first derive an analytic map that
takes us from the known lower-order moments to the
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parameters that determine the PDF. We must then be
able to write tractable formulas that take us from the
PDF parameters to the unclosed higher-order mo-
ments. This restricts the complexity of the assumed
PDF. The problem is especially acute because we want
a three-dimensional joint PDF of w, ¢,, and 6,, and we
want to permit nonzero skewness.

Although our motivation is the general problem of
deriving analytic closure formulas, this paper will be
restricted mainly to deriving closure equations for the
higher-order boundary layer model of Golaz et al.
(2002a, b). This model prognoses all first- and second-
order moments (means and covariances) of w, ¢,, and
0,, and additionally prognoses the third-order moment
of w, w'>. For the purpose of this paper, these are re-
garded as givens. The model requires closure of the
following turbulent advection terms: w'q,”, w'6,%, w'?q/,
w'?6;, w'q.6;, and w'*. These are our unknowns. The
model of Golaz et al. (2002a) also contains buoyancy
and dissipation terms that need to be closed, but we do
not consider them here. We desire a PDF family that is
simple but general enough to adequately represent cu-
mulus, stratocumulus, and clear boundary layers. We
choose a trivariate mixture of Gaussians. It is a gener-
alized version of the Analytic Double Gaussian 1 of
Larson et al. (2002). Below we list a set of fairly non-
restrictive conditions (such as that the variances are
positive) under which the derived moments are realiz-
able. By this we mean that the prognosed and diag-
nosed moments correspond to a real PDF, namely one
that is normalized and nonnegative everywhere.

We will compare various PDF-derived closures with
three large eddy simulations (LESs). The simulated
cases are a trade wind cumulus layer, a stratocumulus
boundary layer, and a clear convective boundary layer.
We compare the mixture of Gaussians PDF with two
other PDFs that have served as the basis of closures in
the meteorological literature: a mixture of two delta
functions (Randall et al. 1992; Abdella and McFarlane
1997; Zilitinkevich et al. 1999; Lappen and Randall
2001), and a mixture of three delta functions (Mironov
et al. 1999; Abdella and Petersen 2000; Gryanik and
Hartmann 2002). The latter two PDFs correspond to
mass-flux schemes with no within-plume variability
(Randall et al. 1992; de Roode et al. 2000; Lappen and
Randall 2001; Gryanik and Hartmann 2002). For con-
ciseness, we do not investigate closures that are not
derived purely from PDFs but instead include a down-
gradient diffusion term (Zilitinkevich et al. 1999) or the
quasi-normal approximation (Canuto et al. 2001).

The present paper differs from Larson et al. (2002)
because they discuss the diagnosis of cloud properties
such as cloud fraction and liquid water content; here we
instead investigate higher-order moments of conserved
quantities. A further difference is that the present pa-
per derives explicit formulas for higher-order moments
in terms of lower-order moments; Larson et al. (2002)
and Golaz et al. (2002b) merely wrote down higher-
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order moments in terms of PDF parameters and left
their relationship to lower-order moments implicit.
Major notation is summarized in appendix A.

2. The proposed PDF: A mixture of trivariate
Gaussians

We now introduce a family of PDFs and show how to
analytically specify the defining PDF parameters from a
prescribed set of moments. The PDF is a modification
of the Analytic Double Gaussian 1 of Larson et al.
(2002), with the parameters specified using improved
diagnostic formulas.

a. Functional form of the mixture of trivariate
Gaussians

Our proposed PDF is a simplified mixture of trivari-
ate Gaussians. The simplifications make the PDF less
general but mathematically more tractable. The PDF
depends on three variables: w, g,, and 6, The chief
advantages of the PDF for our purposes are that it
permits both positive and negative skewness, and that it
leads to an analytic closure.

For notational convenience, we will use normalized
variables. For the thermodynamic scalars, we use a
standardized form, denoted by a tilde, ~:

LARSON AND GOLAZ

1025

Here 6, g, 6;> and ¢, are the means and variances of
6, and g, for the full PDF (not an individual Gaussian).
We normalize variables that contain w’ = w — W in a
way that simplifies subsequent notation. We denote
such variables by a hat, ©

w—w 1
w’ . 3)

E\/ﬁ(l—&z 12

Here w and w'? are the mean and variance of w over the
full PDF, including both Gaussians. Also, ,, = o,/

w'?, where a,, denotes the standard deviations (widths)
of each individual Gaussian, which are set equal. Equa-
tion (3) centers and normalizes w. Making W' depend
on &2, simplifies the subsequent equations by removing
&7, except in the factors w?(1 — &%) and &2/(1 — &2).

Our PDF, Py, (#' , 0;, G), is a trivariate mixture of
two Gaussians, G, and Gy

6,4, + (1 — a)G,(0', 0}, G)).
4)

Here, 0 < a < 1 is the (nondimensional) mixture frac-
tion. To simplify the mathematics, we prohibit each
Gaussian, or “plume,”" from having any within-plume
correlation between w and ¢,, or between w and 0,
Velocity—scalar correlations still arise from correlations
between the two plumes. We do permit subplume cor-
relation between ¢, and 6,, in order to improve agree-
ment with atmospheric PDFs (Larson et al. 2002). The
functional form of the ith Gaussian, where i = 1 or 2, is

W', 0, G) = aG,(w

Ptmg(

1

~ 6[ - 6[
b=""=. (1)
6;
49
Gi="= 2)
q;
1 _ 6_3} 1/2 W/Z 6 Vf)’, é/’ 51 —
( ) l q[ ( ! q[) (2#)3/2[&‘4}/(1 — G
1
X [ —
exp 5
( oy )
Here,
~ 0, — 61
6, = = (6)
6;
- 4~ 4,
QtiE : _2[7 (7)
q;
and
w,—w 1 ®)
\/7 (1 _ )1/2 ’

2\112 ~  ~ 2 172
W)] O-qlio-eli(l - rqlel)

A A

w w

-w | 1 4= du\
~/<1—<J2>”] }Xe"p{ 2(1—rq,e,>[< G )

)

where the mean of the ith Gaussian is (w;, 0;;, g,;). The

parameters &, = a,,/\/w'?, &5, = 0,,/\/ 6;°,and 5, =
ol 2 are normalized versions of the standard de-
viations o, 04, and g, ; of the ith Gaussian (5). Finally,
r4,0,18 the within-plume correlation of g, and 6, which is

' A “plume” is defined here to be a mixture component of the
PDF. Since the Gaussians may overlap, the plumes are not nec-
essarily distinct or separable. For instance, each plume may con-
tain both updrafts and downdrafts.
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set equal for plumes 1 and 2, and must lie in the range
—1to 1.

b. A list of given moments and PDF parameters

The boundary layer model of Golaz et al. (2002a, b)
prognoses the followmg 10 moments for each grld box
and time step: w, w2 w' 6,, w 6,, q, w'q, q,, 0, , g/ and
q,0;. We use these moments to specify a particular PDF
within the family defined by (4) and (5). That is, we use
the moments to determine the values of the 13 PDF
parameters a, Wy, Wa, 011, 0, G1s 4oy Gy G5 Gy Ty,

0,2, and r, o. To solve for the 13 unknowns in terms of
the 10 knowns, we clearly need to make diagnostic as-
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sumptions; these are embedded in Egs. (20)—(28) be-
low.

c. Writing given moments in terms of PDF
parameters

In this subsection, we list equations for moments in
terms of PDF parameters. These are obtained by inte-
grating the PDF, multiplied by the appropriate central
moment (written to the left of each equation), over all
possible values of w, q,, and 6,. For instance, the mean
of w is obtained by w = [Z, wP,,dw db, dq,. The
equations are then rewritten in terms of centered, nor-
malized variables:

w: aw, + (1 — a)wz, 9)
~2
O-W
w'?: = o) TAa w3+ ———— |, (10)
(1 - —d5) 1-a,
5 A Wr3 .\ 6’2 6'2
w': Sk,, = =al w3} + 3w = + 1 —a)| w3+ 3w ), 11
w (1 _ 6'3,)3/2 (W,2)3/2 1 1 6’3,) ( ) 2 2 (1 _ ~§} ( )
0;: 0=ab, + (1 —a)bp, (12)
6, 1=a(0; +d5) + (1 —a)0p + d3), (13)
q: 0= ag, + (1- a)qa’ (14)
q;* L=a(@y +6,,) + (1 —a)dn + 67,), (15)
0, g ! O v .0, + (1 — ayi,f (16)
w l: Cwel = 1/2 \/_ \/_ = aw,bp — a)wr0p,
L . 1 W’q; Cwa PSP (1 )A . (17)
w'q;: Crg = — == = aw — )Wy,
q: a1 — &3)1/2 W \/E (1 — 62) 190 24
o . ah 91 _ = .
q:0r: 3 =a(g, 911 + rg004,00,) T (1 = aNdn0p + ry06,.60,) (18)

We also list a moment that is diagnosed rather than
prognosed [see Eq. (33) below]:

13 0_}3
6, Skg, = = a((9,1 + 319,]061
()
+ (1 = a)(0 + 30,65,). (19)

These equations are not restricted to mixtures of two
Gaussians; they can also apply to mixtures of two non-
Gaussian distributions. However, the equations are not
general forms for mixtures of two distributions, because
they make use of simplifying assumptions, such as that
there is zero within-plume correlation of w and 6,, and

w and q,; that the within-plume correlations of g, and 6,
are equal for plumes 1 and 2; and that the within-plume
skewness is zero.

d. Finding PDF parameters in terms of moments

We now select a particular member of our Gaussian-
mixture family by mapping the prognosed moments to
the PDF parameters. In other words, we invert Eqgs.
(9)—(18) in order to find the set of PDF parameters that
guarantees that the resulting PDF has moments that
correspond to the prognosed ones. The inversion is
nontrivial because the equations are nonlinear in the
PDF parameters. However, the PDF (4)—(5) is simple
enough to permit an analytic solution.

The solution procedure is as follows. First, we solve
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for the PDF parameters a, w,, and w, from the moment

equations for w (9), w2 (10), w'> (11):

1 A 1 172
a==|1-3k, , 20)

2[ <4+§k‘fv> ]
Coww 1 _(1—a>w .
RV

1 a 172
E\/7<1 ~2>“2__<1—a>' -

We have chosen, arbitrarily but without loss of gener-
ality, to set W, > W,. Equation (20) implies that Sk,
is determined solely by a:
5 = 1—2a
" al - @)

The temperature means of the individual plumes, 0,
and 6, can be obtained from the equations for 6, (12)
and w'6; (16):

(23)

~ 0 — a1 Cweo,
0, = — = T T, (24)

Vo "

~ 0[2 - 6[ éwﬂ
0, = = == w_l (25)

0; 1

The widths of the plumes, &, and &, are determined by
satisfying the moment equations for 6;> (13) and 6;> (19):

+ (1 - “)m ! Sk, k). (26
a Séwel( wﬂl ) ( )
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72
0

a 121
- (1—a) 3¢,

Here Sk, is the skewness of 6, It must be provided
either by a prognostic equation or by a diagnostic
equation such as (33) below. Equations for G,, G,
a2 a1-and o &2 42 are found by expressmns identical to (24),
(25) (26), and (27), except that 6, is replaced every-
where by g,. Finally, from the equation for ¢;6; (18), we
find

~2 _
Top =

(1 - wel)

(Sko, — €255k, (27)

Ca0, ~ Cuglue,

— a)g, 92902

a9,
r =

q:9; 5 .G

t a6, 16, + (1

(28)

Here r,, is the subplume correlatlon, Cq0, is the total
correlation. Finally, the parameter &2 is given by Eq.
(37) below.

Equations (20)—(27) have the same content as
Egs. (A16)-(A22) of Larson et al. (2002) for the
Analytic Double Gaussian 1 PDF. However, rewriting
them in the present form emphasizes the similarity
with the double delta function PDF. In fact, Egs. (20)—
(25) hold for the double delta PDF if the hats are
dropped.

e. Higher-order moments in terms of PDF
parameters

Once the PDF parameters have been specified, all
higher-order moments can be calculated by integration
over the PDF. The needed formulas are:

~4 ~2
g,

(1= G2F WP

+3 1= a)| ez —T
—-62) (-2 2162

e } (29)
(-2
w'?6, | |- o a2 |-
a-é )W(p)l/z - 1t 1-é by + (1 —a)| w3 + 1-3d) 0, (30)
w l w w.
W/ a2 _ :
(1 — 62)" ,2)1/20,2 = awy (6 + 0'9,1) + (1 = a6 + 5'(29,2), (31)
- w
w Qtel = L .
= aw1(§n0n + 14,604100,) T (1 — a)W2(§20p + 1460,,00,)- (32)

(l-o

1/2(W72)]/2(q72)1/2( 9[!2)1/2
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The equations for w'?q, and w'q,” are analogous to (30)
and (31).

3. An additional assumption: A diagnostic ansatz
for the skewness of heat and moisture

We cannot close the system of equations until we
specify the skewness of 6, Sk,, which appears in the
equations for &y, (26) and &, (27). Likewise, we need
to specify Sk,. We could prognose these scalar skew-
nesses, but this would involve additional computational
expense, storage, and complexity. In some cases, the
extra complexity may be worthwhile. However, here we
instead propose the following diagnostic formula:

B)éw(ﬂ[]

and a similar formula for Sk,. The parameter B is di-
mensionless. Any value of 3 from 0 to 3 is consistent
with realizability. This formula is an empirical assump-
tion that is separate from the assumption of the Gaus-
sian-mixture PDF. It simply fixes the scalar skewness
using a diagnostic formula rather than a prognostic
equation. The quantity |Sk, | increases with increasing
B. When B = 0, the formula reduces to that (61) for a
double delta function PDF. When B = 1, Sk, depends
linearly on the heat flux correlation, ¢,

Equation (33) is physically plau51ble but limited at
the same time. The formula states that Sk, is propor-
tional to Sk,,, the skewness of w. An increase in 3 leads
to an increase in |Ske/|, which, in turn, leads to a PDF
with a longer 6-tail. The quantities Sk, and Sk,, have
the same sign when w and 6, are positively correlated;
Sky, and Sk,, have opposite sign when w and 6, are
negatively correlated. In our large eddy simulations,
this is usually but not always true. The quantity Sk,
vanishes when either Sk,, or c,, vanishes; clearly this
need not be true in nature. The quantity |Sk, | can be
either smaller or larger than |Sk, |, depending on the
values of &7, Cwe, and B. In contrast, |Sk, | = |Sk,,| by a
factor of |c}, ol for the double delta functlon PDF of
Randall et al. (1992) [see Eq. (61) below].

Larson et al. (2002) used the following alternative
diagnoses for the skewnesses: Sk, = 0 and Sk, =
1.2Sk,,. Equation (33) has the following advantages
over the formulas of Larson et al. (2002):

Sk, = SK,,6,0[B + (1 = (33)

1) Because Eq. (33) for Sk, is proportional to ¢, us-
ing it in the equations for &, , [(26)-(27)] prevents
these equations from becoming infinite in magni-
tude when ¢, — 0.

2) Because of the way ¢, enters Eq. (33), it satisfies
the requirements of parity or reflectional symmetry
(Mironov et al. 1999). That is, if 6, changes sign
everywhere in the equation, both sides of the equa-
tion change sign. The equation has even symmetry
with respect to w.

In contrast, the formula Sk, = 1.28k,, of Larson
et al. (2002) does not obey the correct symmetry
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properties: if g, changes sign, the left-hand side
changes sign, but the right-hand side does not; and if
w changes sign, the right-hand side changes sign, but
the left-hand side does not. The practical problem
with the formula Sk, = 1.28k,,, which has incorrect
symmetry properties, is that it is likely to yield the
wrong sign for Sk, when ¢,,, < 0. However, usually
atmospheric boundary layers have ¢, > 0.

3) The skewness formula (33) can be shown to yield a
realizable set of moments, when used in conjunction
with the Gaussian-mixture PDF. By “realizable,” we
mean that when (33) is used in specifying the mo-
ments, the resulting Gaussian-mixture PDF is nor-
malized and nonnegative everywhere. An unrealiz-
able PDF would result, for instance, if Egs. (26) and
(27) were to yield negative plume widths. An ex-
ample of this problem for the Analytic Double
Gaussian 1 is shown in Fig. 4 of Larson et al. (2002),
where a negative plume width occurs and has been
set to zero.

If we assume our ansatz (33) for Sk, then the 6,
widths of plumes 1 (26) and 2 (27) reduce to

L, A=t 2
09,1=7[§B+a<1—§l3>} 34)
and

-2 (1 - we,) 1 2
Gop = T4 {1—[§B+a<l—§ﬁ)]}.
(35)

Substituting (34), (35), and their ¢, counterparts into
the expression for r,, (28) yields the simplified form:

r c‘1191 B cW‘Ircwel (36)
q,9 172 A2 172
o - ) (L= )

Here r, 4 is the within-plume correlation of g, and 6
Cq,0, 18 the total correlation.

We have not yet specified the w width of the indi-
vidual plumes, &,,. Larson et al. (2002) chose &2 = 0.4.
Here, instead we make 2 dependent on the maximum
of ¢, and ¢,

‘Y[l - maX(CWG[’ Wq[)] (37)

Here 0 = y < 1 is a dimensionless constant. This for-

mula helps ensure that when ¢,,, or ¢, becomes large
A2 ~2

in magnitude, 0 < cw(,[ g, <1 and hence crq1 2 091,25

and r, o remain realistic.

4. Proposed closures for third- and fourth-order
moments based on the mixture of trivariate
Gaussians

This section lists formulas for four higher-order mo-
ments that are needed for closure_in th_epar&eteriza—
tion of Golaz et al. (2002a): w'*, w'?6;, w'0;%, and
w'q,6;. These are obtained by substltutlng the expres-
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sions for the PDF parameters (20)—(28) into the equa-
tions for the higher-order moments (29)-(32). Formu-
las for w'?q! and w’q/?, which are also needed, are iden-
tical to those for w'?6; and w'6;> except that g, replaces
0, everywhere.

For convenience of the reader, we will list each for-
mula twice: once in nondimensional form in order to
illustrate their similarity with the double delta PDF;
and once in dimensional form in order to list the for-
mula that is plotted in the figures below and in order to
show how &2, influences the higher-order moments.

First, we list the equation for 6;°, which is obtained
by dimensionalizing (33):

03— 1 W,S 02w o

1 (W)
~2 We_}z N

1-a3,

(38)

The scalar third moments are not needed to close the
prognostic equations of Golaz et al. (2002a), but they
do influence cloud properties, since cumulus clouds of-
ten reside on the tail of the scalar PDF. For typical
parameter values, 0, becomes larger with increases in
&2 = o’ /w', the relatlve width of the plumes in w [see
Eq (38)]. That is, 6, increases as the marginal w-PDF
becomes broader shaped and less like a double delta
PDF. o

The quantity w'* does not depend on the thermody-
namic scalar moments; therefore, it does not depend on
B. Substituting (21) and (22) into (29) and using (23), we
find

wt G 5
— = —+6———5-+1+ Sk,
(1 - 6’3\,)2(‘4}’2)2 (1 - &w) (1 - &w)
(39)

= (w2P36E + 6(1 — 62)62
(")

+(1 —_—
( (1-a7) w?

-6 +

(40)
We see from (40) that w'# increases as &2 increases. If
we set &2, = 0.4, a value that fits our LES reasonably
well, we fmd that w'* = (228 + 1.67Sk2)(w’?)% This
formula is similar to that of Gryamk and Hartmann
[2002, their Eq. (27)], namely, w'* = (3 + Sk2)(w'?)%
The latter formula interpolates between a single-
Gaussian behavior for zero skewness and a double
delta function behavior for large skewness.
Similar to w'*, w'?6; does not depend on B for our
particular PDF family. Substituting (21)—(25) into (30),
we find

w’26,’

_~2T?1/2:A Sk,
(I = a,)w'(6,°)

Cw9[ w

(41)
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—5 L wl
Wl =——=—=w'o.
(1 —an)w?
In (42), 1/(1 — &2) appears as a simple prefactor. Be-
cause we have derived this prefactor from an assump-
tion about the shape of the PDF, we can give physical
meaning to it. Namely, it is a simple function of the
width of the plumes in w, and as the within-plume w
variability increases, so does w'?6;. This prefactor is set
to 1 by Mironov et al. (1999) and 1.8 by Abdella and
Petersen (2000). If we use our Gaussian-mixture PDF,
we see that 1/(1 — &2) = 1 corresponds to &2 = 0 (i.e.,
a double delta function PDF) and that 1/(1 — 2) = 1.8
corresponds to a moderate width of &2 = 0.44. The
latter is close to the values that best fit our LES of clear
and cloudy boundary layers.
The quantity w'6;> depends explicitly on Sk, Substi-
tuting (21)—(27) into (31) yields

(42)

w'0;? 2, S 4 1 Sk, i
(1= 62 2w?) 207 37 3w .

2 1 w

W/6/2 _ ( /0/ 2
! 31 - ~§V)2( 22 !
12 013
50— 62) —rt (44)
0;

Since w'6; appears in the denominator, this formula
becomes singular as w'6; approaches zero. For this rea-
son, if one uses this formula with observed values of 6,
and w'6;, the diagnosis of w'6; can be quite noisy. We
can remove the singularity by substituting in our ansatz
for Sk, (33), or equivalently, Eq. (38) for 6%, which has

? o« w'6;. Then we find
1
- §B)éiel:|7

(45)

/
—_

w'6;” 1
(1 _ 1/2( ’2)]/26}2 kw gB +

— w'?
w'g)? = =
w'?

(46)

(1-0a3) w?

One may make the following comments on this for-
/> is the turbulent transport of

6,%. Roughly speaking, w’'6;> > 0 if there is more tem-
perature variability, 6;%, in updrafts than downdrafts,
and Vlce versa. In the approx1mat10n (45), the sign of

% is determined  solely by the sign of Sk,,. The link
between the sign of Sk,, and the correspondmg variabil-
ity in the two drafts is illustrated graphically in Fig. 1,
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F1G. 1. Examples of three PDF families: the mixture of two trivariate Gaussian (contours),
the double delta function (stars), and the triple delta function (x). The dashed contour is at 1%
of the PDF maximum; the solid contours are evenly spaced. The subplots vary the values of
scaled velocity skewness (Sk,,), scalar skewness (Sk,), and scaled correlation (¢,,,). For all
subplots, 8 = 0.8 and &2 = 0.4. The double delta function is chosen to match Sk,, and ¢, UL
it does not and cannot in general also match Sk, The triple delta function is chosen to match
Sk and Sk, but it does not and cannot in general match ¢,,. Note that the double delta
function tends to underpredict the scalar variance, 6,2, especially i in { the lower-right panel. It
also usually underpredicts Sk, The triple delta function matches 6;? and Sk, exactly.

described below. In Eq. (45), |[w'6,?| is increased by an  The function E(w, q,, 6)) is
increase in f3, as is |Ske/|.

Finally, substituting (21)—(28) into (32) yields the fol- 1 2a
lowing formula for the turbulent flux of ¢,6;, w'q, 0;: 1- 21 =24 13
v E=m1
w qt / A A Q1. —
(1 _ 6'2 )1/2(w/2)1/2(q/2)1/2(6;2)1/2 - CWqZCWGISkW L+ Zg
where
+ E(w, q,, 0,) Sk w(€q0, = Cuglue)s 47)
1-—ad,,0
1 1 1+é= e
— EE WT+ 1_§E _ / w3 a 04,00,
w' — —+t——Swqwo—
q:9 = (1_6_3v)qt IW,Z (1_63)2 q: 1
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and

1
Sk + = Sk

A6 2 we 2

= Sk, — (51)

1

<4 + 8K 28,01 = L), (52)

and A, and B, are analogous. We now list two cases in
which the expression for E simplifies. First, if

O 0-912

=1, (53)

G-tm 0-911

then E = 0. This would occur, for instance, if the widths
of plumes 1 and 2 were equal to each other for both ¢,
and 0, thatis, if 5, , = &, and &, = 0, . Second, if we
use the diagnostic ansatz (33) for the scalar skewnesses,
then

1-2¢
T o
where
{—a+%8(1—2a) (55)
Then we find
E = z B (56)
3

5. What moments lead to a realizable
Gaussian-mixture PDF?

In the assumed PDF method, the host model prog-
noses a set of moments, for example, W, g,, w'?, etc. This
set of moments may possess a property called “realiz-
ability.” More precisely, one can introduce and define
several varieties of realizability.

The assumed PDF method uses a set of prognosed
moments to determine a PDF. But because the prog-
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nosed moments may contain errors, the set of moments
may not correspond to any real PDF, that is, a PDF that
is normalized and nonnegative everywhere (Pope 2000,
p. 464). For instance, the host model may produce a
negative variance. We call all such sets of moments
“generically unrealizable.” All other sets of moments,
namely, each set that corresponds to some real PDF, we
call “generically realizable.”

A related but different case arises when a set of mo-
ments corresponds to a real PDF, but that PDF is not a
member of the family of assumed PDFs. In other
words, the set of moments is generically realizable but
is unrealizable with respect to a particular assumed
PDF family. Consider an example. Suppose that the
assumed PDF family is a single Gaussian, which, by
definition, has zero skewness. Furthermore, suppose
that a host model prognoses a set of moments that in-
cludes a nonzero skewness. This set of moments does
not correspond to any single Gaussian, although it may
or may not correspond to a real PDF. We call all such
sets of moments “specifically unrealizable” with respect
to the PDF family of interest. In contrast, we call all
other sets of moments, namely, those that correspond
to a PDF within the PDF family of interest, “specifically
realizable,” or, more succinctly, “realizable” with re-
spect to the PDF family. The terms “specifically real-
izable” and “specifically unrealizable” only have mean-
ing if a particular PDF family is specified. Our defini-
tions of realizability are not directly related to the
moment inequalities presented in Zilitinkevich et al.
(1999) and Abdella and Petersen (2000), which are ap-
proximate and do not pertain solely to a specific PDF
family. Pope (2000) discusses generic realizability but
not specific realizability.

A Venn diagram illustrating the relationship between
these kinds of realizability is given in Fig. 2. The sets of
moments that are generically unrealizable and the sets
that are generically realizable are disjoint. Also disjoint
are the sets of moments that are specifically unrealiz-
able and specifically realizable with respect to the PDF

Venn diagram of various kinds of realizability

All generically unrealizable sets of moments.
L

to real PDFs,

F
1

All generically realizable sets of moments,)
l.e., all sets of moments corresponding

All specmcally realizable sets of m
% all sets of moments correspo
to the Gaussian—mixture family.

All specifi realizable sets of moments.

yments.

F1G. 2. A Venn diagram that illustrates types of realizability. Specific realizability is a subset
of generic realizability. Generic realizability and generic unrealizability are mutually exclu-
sive, as are specific realizability and specific unrealizability.
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family of interest. The sets of moments that are specifi-
cally realizable with respect to the PDF family of inter-
est form a subset of the generically realizable sets. It is
advantageous to choose a PDF family that is broad, so
that there are few sets of moments that are generically
realizable but are specifically unrealizable with respect
to the PDF family.

There are plausible sets of moments that are specifi-
cally unrealizable with respect to the Analytic Double
Gaussian 1 family of Larson et al. (2002), because this
PDF family is too restrictive. In particular, their skew-
ness diagnoses, Sk, = 0 and Sk = 1.28k,, can lead to
negative or 1nf1n1te values of 0612 when ¢é,,4, and cwa
vanish [see Egs. (26) and (27)]. When this happens ina
numerical simulation, &, , must be reset to reasonable
values (Larson et al. 2002).

This problem is ameliorated by the new mixture of
trivariate Gaussians with scalar skewness given by (33)
and plume w width given by (37). For realizability we
require three conditions on the moments provided by
the host model. First, the variances must be positive,
that is,

w'2, 072, q)* > 0. (57)
Second, correlations must lie in the range (—1, 1),
that is,

—1<c,y,C C, o <1

wop “wqp ~q,0;

(58)

These two restrictions are not imposed by our assumed
PDF family; any set of moments that violates these
requirements is generically unrealizable. If we stipulate
that 0 = y < 1, then we see from (37), (16), and (17)
that —1 < o Cg, < 1. If we combine this restriction
on ¢, € w1th the demand that 0 < B = 3, then Egs.
(34) and (35) show that 0%1 >0, as required for real-
izability. Similarly, o7, ; , >0

There is a final requirement for realizability, namely,
that —1 < r,, <1. (Recall that r,, is the subplume
correlation; ¢, o is the total correlation.) To meet this
requirement, (36) shows that for specific realizability
with respect to the Gaussian-mixture PDF, we need

A A A2 12 A2 12
Cwqtcwel - (1 - cwq[) (1 - cwel) <c q.9;
2 12 /\2 172
< wq, w91 + (1 - ) (1 wel) ’ . (59)

This condition is particular to our PDF, and not general
to all PDFs. However, the condition is fairly unrestric-
tive, and many PDFs of practical interest satisfy it. For
instance, this condition is violated by less than 1% of
the LES PDFs of the Barbados Oceanographic and Me-
teorological Experiment (BOMEX), the First Interna-
tional Satellite Cloud Climatology Project (ISCCP) Re-
gional Experiment (FIRE), and Wangara cases exam-
ined in this paper, when B = 0.8 and y = 0.45. The
range of acceptable values of ¢, 4 is centered on ¢,,, ¢y,

and extends a distance =(1 — é,,,)"*(1 — &,,)"”. When

¢,y = C,o = 0, the range of acceptable values is *1;

wq, wo,
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when é,,, = *1 or ¢, = *1, there is only one accept-
able value, namely, ¢, o = ¢,,, 0. Every trivariate PDF
family must have some restriction on the possible rela-
tionships between correlations—a set of three correla-
tions cannot vary arbitrarily. To illustrate this, note that
if w and 6, are perfectly correlated, then ¢, cannot be
perfectly correlated with w but perfectly anticorrelated
with 6,.

To use this closure, a model code must enforce the
realizability conditions (57), (58), and (59) by resetting
the offending moment inputs to lie within the accept-
able range. A negative or zero variance must be reset to
a small, positive value. Likewise, unacceptable values
of the correlations must be reset to lie within the ranges
given by (58) and (59).

6. For comparison: Moment closures based on the
double delta function PDF

In this section we describe an alternative PDF that
consists of two delta functions. A double delta function
PDF corresponds to a two-plume mass-flux scheme that
contains no within-plume variability (Randall et al.
1992; de Roode et al. 2000; Lappen and Randall 2001).
We compute the PDF parameters following Randall et
al. (1992). In this method, one positions the delta func-
tions suc such that the PDF matches the sc scalar ﬂuxes w'e,
and w'q,. Then the scalar variances, 6 and ¢/, are not
guaranteed to be matched. An alternative is to match
the scalar variances, but then the scalar fluxes are not
necessarily matched. This alternative PDF family is not
investigated here.

The double delta PDF family is a special case of the
trivariate mixture of Gaussians in which the widths of
the individual plumes tend to zero. The analogy is high-
lighted by the hat notation used above. The similarity
shows that the Gaussian-mixture PDF is as simple as
the double delta PDF in some respects (but not all).

a. Functional form of the mixture of two delta
functions

The functional form is

N w202 2Py = adod' —,)8 (6, — 6,)8(q, — Gn)

+ (1 — a)d(w' — )80, — 6,)8(4, — Gpo)-  (60)

Here & denotes the Dirac delta function.

b. A list of given moments and PDF parameters

To use the double delta function PDF, one Would
need to mgnose the followmg seven moments: w, w'?

w3 9,, w'6;, q,, and w'q

These moments could then be used to specify the
seven PDF parameters: a, Wy, W, 0;;, 0, G,1, and §G,,.
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c. Writing given moments in terms of PDF
parameters

To convert from PDF parameters to moments, we set
0, = Ogy = 0gs 7,> = 0,and use Egs. (9), (10),
(11), (12), (14) (16) and (17)

d. Finding PDF parameters in terms of moments

To solve for the PDF parameters, we set &2 = 0,
which implies that we drop all hats, . Then we use Eqgs.
(20)—(25).

e. Closures for third- and fourth-order moments
based on the mixture of delta functions

Formulas for Sk,, w'*, w'26;, w'6;>, and w’'q;6; based
on the double delta family can be recovered from the
Gaussian-mixture family by setting £ = 8 = 0 and 52,
= 0 in Eqgs. (33), (39), (41), (43), and (47). The latter
change means that all hats () can be dropped from the
formulas. We find the following formulas. For the sca-
lar skewness, the double delta function yields

Sk, = Sk cl

whwo;

(61)

It is important to note that for the double delta PDF,
Sky, and Sk, are not free parameters that can be prog-
nosed or dragnosed as for the Gaussian-mixture PDF
[see Eq. (33)]. Rather, for the double delta PDF, the
scalar skewnesses are determined by the choices of Sk,,
and the scalar fluxes. From (61) we see that Sk, is much
smaller than Sk, when c,, is moderately less than
unrty

The double delta PDF yields the following formula
for w'* [see, e.g., Gryanik and Hartmann 2002, their Eq.
(13)]:

Wr4

—=—=1+ Sk,
w2 w'?

(62)

When Sk,, = 0, this reduces to a smaller value, 1, than
for a single Gaussian, 3. In addition, the double delta
function yields

w’20,’

w07

(63)

= Cwe,S e

This formula was proposed by Abdella and McFarlane
(1997), Zilitinkevich et al. (1999), and Gryanik and
Hartmann (2002). The double delta PDF also gives

2 One might expect c,,, = =1 always for a double delta func-
tion. Recall, however, that with the double delta function of Ran-
dall et al. (1992), the scalar variances of the PDF do not in general
match those of the true PDF. Since we define the correlation c,,,
in terms of the true 6, rather than the double delta’s diagnosis of
9,’2 it is possible to have |c,,,| < 1. For an example in which the
double delta function of Randall et al. (1992) diagnoses Sk, =
w6, = 0, see the lower-right panel of Fig. 1.
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rpr2 Sk

WO 2 og 2R (64)

(w’2)1a(9}2 Cuo,
This differs from the mass-flux formulas of Mironov et
al. (1999), Abdella and Petersen (2000), and Gryanik
and Hartmann (2002), who instead propose a formula
that can be derived from a triple delta function PDF.
Finally, we find

w'q;0;
(w72)1/2(q[ )1/2(0}2)1/2

Sk,,.. (65)

wq, we,

7. For comparison: Moment closures based on the
triple delta function PDF

To formulate a closure for w’6;?, one could simply
switch the role of w and 6, in the double delta closure
for w'26; (63). This yields

2
w'e,

(w72)1/26;2

TN

This formula is valid; in fact, it fits the LES in Figs. 3-8
better than the double delta Eq. (64). However, (66) is
not consistent with the double delta PDF family, as
shown by comparison with (64). Rather, (66) is consis-
tent with a triple delta PDF family (see Mironov et al.
1999; Gryanik and Hartmann 2002). We will define this
PDF in this section. In accordance with prior authors,
we consider for simplicity only a bivariate triple delta
PDF in w and 6,. This section concludes with sample
plots of the triple delta, double delta, and Gaussian-
mixture PDFs.

a. Functional form of the mixture of three delta
functions

We define two mixture fractions: the velocity (W)
mixture fraction is governed by —1< a < 1; and the
temperature (6;) mixture fraction is governed by —1 <
b < 1. We have two cases. When b = a, the delta
functions are located at (W, 6,,), (W, 6,,), and (W,, 6,,).
The PDF is

N w2 072P,, = ad(w' — )88 — B,,) + (b — a)5(’
—0,)8(6; — 0,) + (1 — b)3(W’

05).

When a = b, the delta functions are located at (w,,
0,1), (W1, 6,2) and (W,, 6),). The PDF is

N w2 62P,, = bow' — w)d(6; — 0,,) + (a — b)3(w’
— W30, — 6,) + (1 — a)d(w’

0,).

—10,)8(6; — (67)

—10,)8(6, — (68)
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FiG. 3. Profiles of ,°, g,°, w'#, and w'q, 6, for the BOMEX trade wind cumulus simulation,
time averaged over the fourth and fifth hours. Shown are LES output (-), approximations
based on the mixture of two trivariate Gaussians PDF (triangles), and approximations based
on double delta (stars) and triple delta (x) function PDFs. For w'?, the double delta and triple
delta PDFs yield the same formula. For the Gaussian-mixture PDF, we choose 8 = 0.8 and vy

2
wq,

= 045, where &}, = y[1 — max(c;,, ¢

)]- The Gaussian-mixture PDF tends to underpredict

the moments, and the double delta PDF does so more severely.

Thus the three delta functions are located at the corners
of a right triangle in (W, 6,) space (see Fig. 1, discussed
below). Each delta function represents one plume. For
example, in addition to having a warm-updraft and
cold-downdraft plume, a triple delta could also include
a cold-updraft plume.

b. A list of given moments and PDF parameters

The bivariate triple delta function requires as input
six moments: w, w'2, w'>, 6, 6,%, and 6,°. These mo-
ments can then be used to specify the six PDF param-
eters: a, b, Wy, W,, 6, and 6),. The triple delta PDF does
not satisfy the turbulent flux, w'6;, unlike the Gaussian-
mixture or double delta PDF families. However, the
triple delta does satisfy 6;°.

c. Writing moments in terms of PDF parameters

These equations are listed in dimensional form by
Gryanik and Hartmann (2002). The dimensionless form
is, for b = a,

W’"O}m _ AN D\ AN/ O\

A a(®1)"(6,)" + (b — a)(W,)"(6,1)

+ (1 = b)(w,)"(6)™ (69)

Fora = b,

Wrng;m - o o
(W)n/z(e_,lz)m/z = b(W,)"(0,)™ + (a — b)(W1)"(6,2)

+ (1 — a)(w,)" (0™ (70)

d. Finding PDF parameters in terms of moments

To solve for a, w,, and w,, we use Egs. (20), (21), and
(22) and set &2, = 0. To solve for b, 6, and 6,,, we use
the same equations (with &2, = 0), but we replace a by
b and w by 6, everywhere.

e. Closures for third- and fourth-order moments
based on the mixture of delta functions

The triple delta function leads to the same formulas
as the double delta function for w'* (62) and w'?6; (63).
For w'6,?%, in contrast, the triple delta yields (66). Since
we have formulated the triple delta as a bivariate PDF,
we cannot find a formula for the trivariate moment
w'q,0;.

We plot examples of the Gaussian-mixture, double
delta, and triple delta PDFs in Fig. 1. This figure illus-
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FiG. 4. Profiles of w'?6;, w'?q/, w'6,%, and w'q,> for the BOMEX trade wind cumulus

simulation, time averaged over the fourth and fifth hours. Shown are LES output (—), ap-
proximations based on the mixture of two trivariate Gaussians PDF (triangles), and approxi-
mations based on double delta (stars) and triple delta (x) function PDFs. For w'6; and w'%q,,
the double delta and triple delta PDFs yield the same formula. For the Gaussian-mixture PDF,
we choose B = 0.8 and y = 0.45, where &2, = y[1 — max(c}, c;,,)]- All three PDFs under.

predict the moments, the Gaussian-mixture least severely and the double delta most severely.

trates how Gaussian-mixture PDFs look if we make the
assumption, embodied in (33), that Sk,, and Sk, have
the same sign when w'6; >0 (i.e., ¢, > 0) and vice
versa for w'6; < 0. This assumption is reasonable but
not always true. Consider now the delta function PDFs.
Although the double delta PDF captures the variability
in w, the delta functions are too closely spaced in 6,
This is especially notable in the lower-right panel,
where w and 6, are uncorrelated. In contrast, the triple
delta function captures variability in both w and 6,. Nei-
ther the double nor triple delta functions are able to
sample the extremities or tails of a spread-out distribu-
tion.

8. How well do the closures model LES output?

In this section we compare closures for higher-order
moments versus output from LESs. We consider clear,
cumulus, and stratocumulus boundary layers. The clo-
sures are based on the Gaussian-mixture, double delta,
and triple delta PDFs.

The first case that we simulate, BOMEX (Siebesma
et al. 2003), is a trade wind cumulus case. The second
case is a nocturnal stratocumulus-topped boundary

layer, based on FIRE (Moeng et al. 1996). The third
case is a clear convective boundary layer, based on day
33 of the Wangara experiment (Clarke et al. 1971;
Deardorff 1974; André et al. 1978).

The LES model is the Regional Atmospheric Mod-
eling System (RAMS), version 4.2x (Cotton et al. 2003).
Liquid water is diagnosed using a saturation adjustment
scheme that instantly evaporates liquid in subsaturated
air and instantly condenses liquid in supersaturated air.
Otherwise, all microphysics is turned off. The horizon-
tal grid spacing is 50 m for the FIRE case and 100 m for
BOMEX and Wangara. The simulations have periodic
horizontal boundary conditions and a flat lower sur-
face. The BOMEX and FIRE cases were set up accord-
ing to specifications from Global Energy and Water
Experiment (GEWEX) Cloud System Study (GCSS)
intercomparisons. RAMS simulations compare well
with those of other models. The Wangara case has not
been compared by GCSS; however, our simulation
agreed with field observations. Details of the setup of
the cases are listed in Golaz et al. (2002b) and refer-
ences therein.

We overplot higher-order moments computed from
the LES with moments approximated by the PDF fami-
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FIG. 5. Profiles of 6;°, ¢,%, w'*, and w’'q,6, for the FIRE stratocumulus simulation, time
averaged over the third hour. Shown are LES output (-), approximations based on the
mixture of two trivariate Gaussians PDF (trlangl_)_d and approximations based on double

w

delta (stars) and triple delta (x) function PDFs. For

, the double delta and triple delta PDFs

yield the same formula. For the Gaussian-mixture PDF we choose B = 0.8 and y = 0.45,

where &2 = y[1 — max(c?

wop w(],

)]. For 6,7, ¢;°, and w'?,

the Gaussian-mixture PDF tends to

underpredlct the moments, and the double delta PDF does so more severely.

lies. To calculate the approximations to higher-order
moments, we obtain the needed lower-order moments
directly from the LES. Thus our comparison with LES
is diagnostic. A test of how well the moments perform
in an interactive one-dimensional higher-order closure
model will be deferred to a forthcom'_g manuscr_i}L

The moments we plot are 6;°, q,;°, w'*, w'ql6;, w '29,’,
w'q/, w'6;%, and w'q,*. The Gaussian- mlxture approxi-
mations we plot are glven in Egs. (38), (40), (48) with E
= (2/3)B, (42), and (46). The corresponding double
delta approximations are given by the same equations,
but with 2 = B = E = 0. The triple delta approxima-
tions for w'* and w'?6, are the same as those for the
double delta. The triple delta formula for w'6,> is (66).
The triple delta PDF satisfies 6, exactly by construc-

tion. Formulas for w'g> and w'’q] are analogous to

those for w 0, and w’20,. Since our triple delta PDF is
bivariate, it cannot approximate the trivariate moment
w'q,6;; thus, it is not plotted.

The higher-order moments are plotted in Figs. 3-8.
All three approximations we test have shortcomings.
Of the three, however, the Gaussian-mixture PDF per-
forms the best overall, and the double delta PDF per-
forms worst.

Considering all three cases overall, the Gaussian-
mixture PDF tends to underpredict 6,° and ¢/°, and in

some instances overpredict w'6;%, w’'q,?, and w'q,6,.
This occurs especially near the top of the boundary
layer, where the sc scalar ﬂuxes w'6; and w'q,, are small.

This is because 6;° and g, are proportlonal to the scalar

fluxes [see Eq. (38)], but w'6;%, w'q,%, and w'q.6; are
not [see Eq. (46)]. In the BOMEX case, the Gaussian-
mixture underpredicts everything except w’'q,?; in the
FIRE and Wangara cases, it underpredicts some mo-
ments and overpredicts others.

In Figs. 3-8, we have set B = 0.8 and y = 0.45. Other
values may be more appropriate for other cases. De-
pending on the situation, changes in these parameters
can affect the results strongly or weakly; for our cases,
the sensitivity is moderate. An increase in 3 leads to
larger |6,°|, 1g.°|, |w'6;?|, and |w’q,*|; leaves unchanged
w'd, w'?0;, and w'?g/; and can either increase or de-
crease |[w'q;0;]. An increase in <y tends to increase the
magnitudes of all plotted moments, for typical param-
eter values. Formulas for the sensitivities are presented
in appendix B.

How much error is introduced in the Gaussian-
mixture PDF by diagnosing scalar skewnesses via (33)
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FIG. 6. Profiles of W'ZO;, w’iq,’, w’ﬂl’i, and w' ,’Z for the FIRE stratocumulus simulation, time

averaged over the third hour. Shown are LES output (-), approximations based on the
mixture of two trivariate Gaussians PDF (triangles), and approximations based on double
delta (stars) and triple delta (x) function PDFs. For w'?6; and w'q/, the double delta and
triple delta PDFs yield the same formula. For the Gaussian-mixture PDF, we choose B = 0.8

and y = 045, where &2, = y[1 — max(c;,, c;
r 12,

rather than prognosing them? How much error is in-
troduced by prohibiting nonzero within-plume veloci-
ty—scalar correlations? These questions were addressed
by Larson et al. (2002), who investigated the closure of
Lewellen and Yoh (1993), which relaxes these restric-
tions. Larson et al. (2002) found that the Lewellen—Yoh
closure can lead to moderate improvements. Unfortu-
nately for the present paper’s objectives, the Lewellen—
Yoh closure is not analytic.

The double delta function PDF underpredicts all mo-
ments except w'?q, in FIRE. Prior research (and Fig. 1)
shows that the variant of double delta function studied
here, which matches scalar fluxes, tends to underpredict
scalar variances (Wang and Stevens 2000; Larson et al.
2002). Also severely underpredicted are 6,° and g.°.
This is not surprising, given that 6;° = ¢}, and
lcywe,| < 1. Analogous expressions hold for g,.

In contrast, the triple delta PDF satisfies 6, and g,°

exactly. However, the triple delta underpredicts w'*,
w'?6;, and w'?q/, since for these moments it yields the
same approximations as the double delta PDF. The
triple delta also underpredicts w'6;? and w’'q,?, al-
though not as severely in BOMEX as does the double

delta.

wq,

for w'26;, w'0;%, and w’'q,?; the double/triple delta performs better for w

)]- The Gaussian-mixture provides a better fit

12 0
q:-

9. Conclusions

This paper discusses a methodology for deriving clo-
sures of higher-order moments in terms of lower- or
equal-order moments. The procedure involves assum-
ing a functional form of a family of probability density
functions (PDFs). The method has been used previ-
ously by meteorologists who assumed that the PDF
family is a double or triple delta function (Randall et al.
1992; Abdella and McFarlane 1997; Zilitinkevich et al.
1999; Mironov et al. 1999; Abdella and Petersen 2000;
Lappen and Randall 2001; Gryanik and Hartmann
2002). Here we assume instead that the PDF is a mix-
ture of two trivariate Gaussians, as given by Egs. (4)
and (5).

The assumed PDF method has several advantages.
First, it can guarantee that if the lower-order moments
are compatible with the assumed PDF family, then the
higher-order moments obtained are specifically realiz-
able, in the sense that they correspond to a member of
the family of assumed PDFs. In particular, our Gauss-
ian-mixture closures guarantee realizability in this
sense if the variances are positive, correlations range
between —1 and 1, and if Eq. (59) holds among the
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FiG. 7. Profiles of 67’*, (T,”r w'*, and w'q, 6, for the Wangara clear convective boundary layer

simulation, time averaged over the seventh and eighth hours. Shown are LES output (-),
approximations based on the mixture of two trivariate Gaussians PDF (triangles), and ap-
proximations based on double delta (stars) and triple delta (x) function PDFs. For w’?, the
double delta and triple delta PDFs yield the same formula. For the Gaussian-mixture PDF, we
choose B = 0.8 and y = 0.45, where &7, = y[1 — max(c}, ¢5,,)]- The Gaussian-mixture PDF
underpredicts 6;° and g,°, but overpredicts w'q,0,. The double delta PDF underpredicts all

moments.

correlations. Second, the assumed PDF method ensures
that the higher-order closure formulas are consistent
with one another, in the sense that they are all derived
from the same PDF. This is useful because often many
closure moments must be derived. Third, the assumed
PDF method helps us derive moment relations with the
correct parity, or reflectional symmetry. In our case, this
leads to closures that are equally valid for both upward
and downward scalar fluxes. Finally, the method pro-
vides a physical interpretation of the coefficients that
appear in the closure, since these coefficients are di-
rectly related to the shape of the assumed PDF.

This paper contains two main results. The first is the
diagnostic Eq. (33) for scalar skewness, Sk, or Sk, , in
terms of vertical velocity skewness, Sk,,. Equation (33)
has been postulated; it is not derived from an assump-
tion of a Gaussian-mixture PDF. The formula is inde-
pendent of the Gaussian-mixture PDF, although we use
it in conjunction with the Gaussian-mixture PDF. The
formula’s chief virtues are that it is simple and physi-
cally plausible. However, it does tend to underpredict
scalar skewness in the boundary layer cases we tested
(see Figs. 3, 5, and 7) for parameter values that fit the
other third-order moments well.

The second main result is simple, analytic closures

for w'*(40), w'q,0,(48), w'20;(42), w'6,> (46), and
analogous closures for w'?g; and w’q,”. If we assume E
= (2/3)B [see Eq. (56)], then these closures are simple
enough to be written down in a single line in terms of
lower-order moments (as opposed to PDF parameters).
These closures have been derived from the formula for
scalar skewness (33) and the assumption of a Gaussian-
mixture PDF. The closures depend on two parameters:
the variance of the individual Gaussian plumes (com-
ponents), 2, and a parameter 8 that governs the scalar
skewnesses. Inspection of how &2 and $ enter the for-
mulas gives insight into how the moments change as the
PDFs change shape.

The closures are compared with large eddy simula-
tions in Figs. 3-8. Although the fits have shortcomings,
they are superior in most cases we test to those based
on double or triple delta function PDFs. Delta func-
tions have difficulties essentially because introducing
highly peaked functions into a PDF drastically alters its
higher-order moments. The assumed PDF methodol-
ogy can be used with any tractable PDF, and we hope
that more sophisticated PDFs than any presented here
will be used in the future to derive closures.

How well the Gaussian-mixture closures work in an
interactive boundary layer parameterization has been
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FiG. 8. Profiles of w'?6,, w'?q,, w'6;%, and w'q,> for the Wangara clear convective boundary

layer simulation, time averaged over the seventh and eighth hours. Shown are LES output (-),
approximations based on the mixture of two trivariate Gaussians PDF (triangles), and ap-
proximations based on double delta (stars) and triple delta (x) function PDFs. For w'26; and
w'<q,, the double delta and triple delta PDFs yield the same formula. For the Gaussian-
mixture PDF, we choose B = 0.8 and y = 0.45, where &;, = y[1 — max(c},, c.,)]- The

Gaussian-mixture PDF fits w'6;% and w'?q; poorly. For these moments, the triple delta PDF

performs better, except near the inversion.

tested by implementing the closures in the one-
dimensional model of Golaz et al. (2002a,b). The re-
sults will be presented in the future.
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APPENDIX A

Summary of Major Notation

Symbol Definition Equation
6 Grid-box-averaged value —
0’ Deviation from grid-box-averaged value —
0; A quantity corresponding to the ith “plume” —
Moment variable Definition Equation
w Vertical velocity —
W’ Normalized and centered w 3)
Sk, Skewness of w Sk,, = w3 /(w'?)*?
Sk,, Normalized skewness of w Sk,, = Sk,,(1 — 52)7%?
0, Liquid water potential temperature —
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Moment variable Definition Equation
0; Normalized and centered 6, (1)
Sk, Skewness of 6, Sk, = 0,7/(6,7)*2
q, Total specific water content —
q, Normalized and centered g, 2)
Sk, Skewness of ¢, Sk, = ar’l(q?)?
—1<c,<1 Correlation of w and 6, (16)
—1<é,,<1 Normalized correlation of w and 6, o, = Cup(l —02) 7
-1 <c¢,, <1 Correlation of w and ¢, 17)
-1<¢é,, <1 Normalized correlation of w and g, Crug, = Cug (1 —&0)7 17
—1<cy <1 Correlation of ¢, and 6, (18)
PDF parameter Definition Equation
0<a<l1 Mixture fraction 4)
o, Standard deviation in w of individual plumes -
a, Normalized o,, G, = UW/\/ w'?
T Standard deviation in 6, of ith plume -
Gy Normalized standard deviation in 6, of ith plume Goi = 0ol 0, 2
Oy Standard deviation in g, of ith plume _
Gy Normalized standard deviation in g, of ith plume Ggi = Ogl q’?
0=B=3 Dimensionless parameter that governs scalar skewness (33)
0=vy<1 Dimensionless parameter that governs &2, 37)
1 <r,e <1 Correlation of ¢, and 6, for ith plume
) Dirac delta function. Normalized function that is infinite when its

argument vanishes and zero elsewhere.

APPENDIX B

How Sensitive is the Gaussian-Mixture Closure to the Parameters y and 3?

It is of interest to determine how much the Gaussian-mixture higher-order moments vary with the adjustable

parameters vy and 3. Because the closure formulas can be derived analytically, we can compute these sensitivities
simply by taking the appropriate partial derivatives. For instance, if we want to know the change in w'*, dw'*,
arising from a change in v, 8y, we simply compute dw'* = (aw'*/dy)dy.

The needed derivatives are presented here. In the following formulas, recall that &2 = y[1 — max(cfvel, cqur)].
The formulas for w'6;> and w'q, 6, assume that we have substituted in the diagnostic ansatz for scalar skewness,

(33).
a0 ., 1 [ — 1 we)>
oy [1 — max(c,p, Cwq,)]m(w)z 0 w6\ 2B + 3(1 — B)mmﬁ ; (B1)
w w 1
a6, 1 ow? 1 Wy
B A Gip e MY 1_1—&3VF9_',2 ’ (B2)
ow'? — 1 w3
_ _ 2 2 =2 12\2
a’y - [1 maX(cw(-)[’ cw:[,)]|:4(1 Uw)(w ) + (1 _ 6’3\))2 W s (BS)
w_ 0 B4
B (B4)
11— max(chay )] — s (8B5)
= = — maxl(c,g, C,, S, S,=w b,
d’y o qr (1 _ 6'3\))2 W,z !
aw'?6;
=0, (B6)
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.
ow' 0 0 @ e w31 e 3B ) ey )
=[1—-max(cZ,, 2 ) ]——==| 3 2 — |,
Iy wor Sl e S | 3P T Ty e
ow' 6] 1 will— 1 1 Wy
e = |30 3 | (B8)
B 1—-65)w? 3 3(1—5'W) w'?
]
ow’ q,B, [1 — max(cq, Crg ) W' G + 2 SB wq w'e, (B9)
0y A-a27 w2 |37 M=) wr |
waq, 1 wil1 11 W,
— |90 - o B10
B a-anwr |31 30— W B

We note a few features of these sensitivities:

1) For all higher-order moments except w'*, the sensi-
tivity with respect to changes in vy depends on some
power of 1/(1 — &,). This factor becomes large as y
— 1 while max(c}, ¢, ) < 1. Therefore, as vy in-
creases in magnitude, the sensitivity to changes in y
also increases. For the same reason, when vy is large,
6,°, w'6;, and w'q,6, are also sensitive to changes
in B.

2) Because B appears linearly in the moment equa-
tions, the sensitivity with respect to changes in 3
does not depend on the value of g itself, but only on
the known moments and v.

3) For all moments, the sensitivity to changes in vy is
proportional to [1 — max(cwel )l Consequently,
the sensitivity to y decreases as max(cwe, Wq) - 1.

4) For all higher-order moments except w'*, the sensi-
tivity on y and 8 depends linearly on w'>. Therefore,
as w'? or Sk,, approaches zero, the sensitivities tend
to become small.
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